4,856 research outputs found

    Pedestrian Trajectory Prediction with Structured Memory Hierarchies

    Full text link
    This paper presents a novel framework for human trajectory prediction based on multimodal data (video and radar). Motivated by recent neuroscience discoveries, we propose incorporating a structured memory component in the human trajectory prediction pipeline to capture historical information to improve performance. We introduce structured LSTM cells for modelling the memory content hierarchically, preserving the spatiotemporal structure of the information and enabling us to capture both short-term and long-term context. We demonstrate how this architecture can be extended to integrate salient information from multiple modalities to automatically store and retrieve important information for decision making without any supervision. We evaluate the effectiveness of the proposed models on a novel multimodal dataset that we introduce, consisting of 40,000 pedestrian trajectories, acquired jointly from a radar system and a CCTV camera system installed in a public place. The performance is also evaluated on the publicly available New York Grand Central pedestrian database. In both settings, the proposed models demonstrate their capability to better anticipate future pedestrian motion compared to existing state of the art.Comment: To appear in ECML-PKDD 201

    Novel Bacterial Diversity and Fragmented eDNA Identified in Hyperbiofilm-Forming Pseudomonas aeruginosa Rugose Small Colony Variant

    Get PDF
    Pseudomonas aeruginosa biofilms represent a major threat to health care. Rugose small colony variants (RSCV) of P. aeruginosa, isolated from chronic infections, display hyperbiofilm phenotype. RSCV biofilms are highly resistant to antibiotics and host defenses. This work shows that RSCV biofilm aggregates consist of two distinct bacterial subpopulations that are uniquely organized displaying contrasting physiological characteristics. Compared with that of PAO1, the extracellular polymeric substance of RSCV PAO1Ī”wspF biofilms presented unique ultrastructural characteristics. Unlike PAO1, PAO1Ī”wspF released fragmented extracellular DNA (eDNA) from live cells. Fragmented eDNA, thus released, was responsible for resistance of PAO1Ī”wspF biofilm to disruption by DNaseI. When added to PAO1, such fragmented eDNA enhanced biofilm formation. Disruption of PAO1Ī”wspF biofilm was achieved by aurine tricarboxylic acid, an inhibitor of DNA-protein interaction. This work provides critical novel insights into the contrasting structural and functional characteristics of a hyperbiofilm-forming clinical bacterial variant relative to its own wild-type strain

    Probing the dynamics of an optically trapped particle by phase sensitive back focal plane interferometry

    Full text link
    The dynamics of an optically trapped particle are often determined by measuring intensity shifts of the back-scattered light from the particle using position sensitive detectors. We present a technique which measures the phase of the back-scattered light using balanced detection in an external Mach-Zender interferometer scheme where we separate out and beat the scattered light from the bead and that from the top surface of our trapping chamber. The technique has improved axial motion resolution over intensity-based detection, and can also be used to measure lateral motion of the trapped particle. In addition, we are able to track the Brownian motion of trapped 1 and 3 Ī¼\mum diameter beads from the phase jitter and show that, similar to intensity-based measurements, phase measurements can also be used to simultaneously determine displacements of the trapped bead as well as the spring constant of the trap. For lateral displacements, we have matched our experimental results with a simulation of the overall phase contour of the back-scattered light for lateral displacements by using plane wave decomposition in conjunction with Mie scattering theory. The position resolution is limited by path drifts of the interferometer which we have presently reduced to obtain a displacement resolution of around 2 nm for 1.1 Ī¼\mum diameter probes by locking the interferometer to a frequency stabilized diode laser.Comment: 10 pages, 7 figure

    Harvest Strategies for the Torres Strait Finfish fishery

    Get PDF
    The project has provided a foundation and framework for a Harvest Strategy for both Spanish mackerel and coral trout, with both fish species supported within the project by stock assessments. An update to the Spanish mackerel assessment was conducted with direct feedback between the outputs and diagnostics of the assessment informing the process of harvest strategy development. Similarly, for coral trout the initial harvest strategy resourced the first preliminary assessment of the coral trout, also funded as part of the project. Project staff worked closely with management agencies and stakeholders, using formal committee meetings inputs and advice, which fulfilled the requirements of the guidelines for developing harvest strategies. The versions of the harvest strategies presented herein are correct up the date of the submission of the report. The current versions of the harvest strategies are adaptive, as various components need checking based on updated assessments and any new information. The project team have made a series of recommendations for future updates required to progress to the full and complete harvest strategies

    Efficient exploration of unknown indoor environments using a team of mobile robots

    Get PDF
    Whenever multiple robots have to solve a common task, they need to coordinate their actions to carry out the task efficiently and to avoid interferences between individual robots. This is especially the case when considering the problem of exploring an unknown environment with a team of mobile robots. To achieve efficient terrain coverage with the sensors of the robots, one first needs to identify unknown areas in the environment. Second, one has to assign target locations to the individual robots so that they gather new and relevant information about the environment with their sensors. This assignment should lead to a distribution of the robots over the environment in a way that they avoid redundant work and do not interfere with each other by, for example, blocking their paths. In this paper, we address the problem of efficiently coordinating a large team of mobile robots. To better distribute the robots over the environment and to avoid redundant work, we take into account the type of place a potential target is located in (e.g., a corridor or a room). This knowledge allows us to improve the distribution of robots over the environment compared to approaches lacking this capability. To autonomously determine the type of a place, we apply a classifier learned using the AdaBoost algorithm. The resulting classifier takes laser range data as input and is able to classify the current location with high accuracy. We additionally use a hidden Markov model to consider the spatial dependencies between nearby locations. Our approach to incorporate the information about the type of places in the assignment process has been implemented and tested in different environments. The experiments illustrate that our system effectively distributes the robots over the environment and allows them to accomplish their mission faster compared to approaches that ignore the place labels

    Quantum diffusion of electromagnetic fields of ultrarelativistic spin-half particles

    Get PDF
    We compute electromagnetic fields created by a relativistic charged spin-half particle in empty space at distances comparable to the particle Compton wavelength. The particle is described as a wave packet evolving according to the Dirac equation. It produces the electromagnetic field that is essentially different from the Coulomb field due to the quantum diffusion effect.Comment: 10 pages, 10 figure

    Climate change adaptation strategies to support Australia's estuarine and coastal marine ecosystems

    Get PDF
    Scientists from James Cook University, CSIRO and Griffith University collaborated to develop a process for planning Climate Change Adaptation actions to support the resilience and productivity of Australia's estuarine and coastal marine ecosystems into the future. This 3 year project involved extensive review of Climate Change Adaptation strategies from across the world and evaluated their usefulness under Australian conditions through reviewing case studies, through interviews with workers from all levels of science and management from across Australia, and by reviewing modelling tools and using advanced qualitative modelling. The project was developed in response to the threats to the fisheries values, biodiversity and ecosystem functions posed by Climate Change on Australiaā€™s estuarine and coastal marine ecosystems that are already heavily impacted by changes in land and water use. This was undertaken in the recognition that large-scale strategy thinking was necessary for a country with a great diversity of estuary and coastal marine ecosystems, plant and animal assemblages, climates, and region-specific threats and matters of contention. The project developed a set of general principles to help direct estuarine and coastal adaptation strategies whatever the particular situation ā€“ to help guide, but not constrain, the development of informed adaptation policies, plans and actions

    Climate change adaptation strategies to support Australia's estuarine and coastal marine ecosystems

    Get PDF
    Scientists from James Cook University, CSIRO and Griffith University collaborated to develop a process for planning Climate Change Adaptation actions to support the resilience and productivity of Australia's estuarine and coastal marine ecosystems into the future. This 3 year project involved extensive review of Climate Change Adaptation strategies from across the world and evaluated their usefulness under Australian conditions through reviewing case studies, through interviews with workers from all levels of science and management from across Australia, and by reviewing modelling tools and using advanced qualitative modelling. The project was developed in response to the threats to the fisheries values, biodiversity and ecosystem functions posed by Climate Change on Australiaā€™s estuarine and coastal marine ecosystems that are already heavily impacted by changes in land and water use. This was undertaken in the recognition that large-scale strategy thinking was necessary for a country with a great diversity of estuary and coastal marine ecosystems, plant and animal assemblages, climates, and region-specific threats and matters of contention. The project developed a set of general principles to help direct estuarine and coastal adaptation strategies whatever the particular situation ā€“ to help guide, but not constrain, the development of informed adaptation policies, plans and actions
    • ā€¦
    corecore